Answer on Question \#39754, Engineering, Other

Question

Olive oil with a density of $830 \mathrm{~kg} / \mathrm{m}^{3}$, in a food factory needs to be pumped in a 30 mm diameter pipe to a tank 10 m above the pump with a rate of $18 \mathrm{~m}^{3} / \mathrm{hr}$. The depth of fluid in the tank is 2.75 m , what pressure must be added to lift the oil to the upper tank.
Friction losses as 5 kpa using this equation

$$
P_{1}+\frac{\rho v_{1}^{2}}{2}+\rho g h_{1}+\Delta P_{e}=P_{2}+\frac{\rho v_{2}^{2}}{2}+\rho g h_{2}+\Delta P_{f}
$$

Solution

The Bernoulli equation states that,

$$
P+\frac{\rho v^{2}}{2}+\rho g h=\text { constant }
$$

In the above equation, P is pressure, which can be either absolute or gage, but should be in the same basis on both sides, ρ represents the density of the fluid, assumed constant, v is the velocity of the fluid at the inlet/outlet, and h is the elevation about a datum that is specified.

We use location 1 for "in" and location 2 for "out."
We have Bernoulli equation

$$
P_{1}+\frac{\rho v_{1}^{2}}{2}+\rho g h_{1}+\Delta P_{e}=P_{2}+\frac{\rho v_{2}^{2}}{2}+\rho g h_{2}+\Delta P_{f}
$$

Now list all the known information at the two locations.
$P_{1}=0$ gage (Open to atmosphere)
$\mathrm{v}_{1}=0$ (Large cross-sectional area)
$h_{1}=0$ (By choice of datum)
From the given discharge rate $Q=18 \mathrm{~m}^{3} / \mathrm{hr}=18 / 3600 \mathrm{~m}^{3} / \mathrm{s}$ and the diameter of the pipe $\mathrm{d}=30 \mathrm{~mm}$ at the upper tank inlet, we can calculate v_{2}.

$$
\begin{gathered}
Q=v_{2} A=v_{2} \frac{\pi d^{2}}{4} \\
v_{2}=\frac{4 Q}{\pi d^{2}}
\end{gathered}
$$

where A is cross sectional area of a pipe

$$
v_{2}=\frac{4 Q}{\pi d^{2}}=\frac{4 \cdot 18}{3.14 \cdot\left(30 \cdot 10^{-3}\right)^{2} \cdot 3600}=7.08 \mathrm{~m} / \mathrm{s}
$$

$\mathrm{p}=0$ gage (Absorber is at atmospheric pressure)
$\mathrm{v}_{2}=7.08 \mathrm{~m} / \mathrm{s}$ (from specified data)
$\mathrm{h}_{2}=10-2.75=7.25 \mathrm{~m}$ (specified)

Substituting some of the known information into the above equation, we obtain

$$
\begin{gathered}
0+\frac{\rho \cdot 0}{2}+\rho g \cdot 0+\Delta P_{e}=0+\frac{\rho v_{2}^{2}}{2}+\rho g h_{2}+\Delta P_{f} \\
\Delta P_{e}=\frac{\rho v_{2}^{2}}{2}+\rho g h_{2}+\Delta P_{f} \\
\Delta P_{e}=\frac{830 \cdot 7.08^{2}}{2}+830 \cdot 9.81 \cdot 7.25+5 \cdot 10^{3}=84834.1 \mathrm{~Pa}=84.8 \mathrm{kPa}
\end{gathered}
$$

Answer. $\Delta P_{e}=84.8 \mathrm{kPa}$.

