Answer on Question\#39687 - Engineering - Other
-15.25 in base-2:
The bias $=2^{k-1}-1$
Where $\mathrm{k}=8$ (exponent space)
\Rightarrow Bias $=2^{8-1}-1=127$
Integral Part 15:
$15_{10}=1111_{2}$
Fractional Part 0.25:
$0.25 \times 2=0.50 \quad($ remainder $=0)$
$0.50 \times 2=1.0($ remainder $=1$)
This derives $0.25_{10}=0.10_{2}$
$\Rightarrow 15.25_{10}=1111.10_{2}=1.11110 \times 2^{3}$
This concludes:
Sign $=1_{2}$ (negative)
Exponent $=$ bias $+3=127+3=130_{10}=202_{8}=100000102$
Mantissa $=1111000_{2}$
Hence the decimal after conversion into binary is:
1100000101111000 is the required answer.

