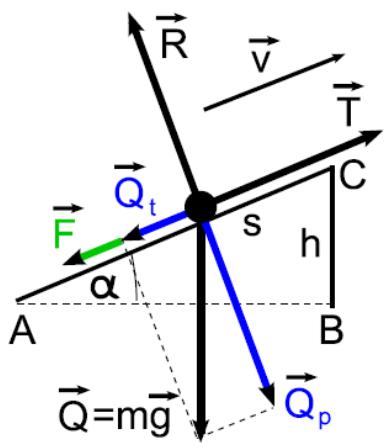


A vehicle of mass 700 kg accelerates uniformly from rest to a velocity of 60 kmh⁻¹ in 10 s whilst ascending a 15% gradient. The frictional resistance to motion is 0.5 kN. Making use of D'Alembert's principle, determine:

- i) the tractive effort between the wheels and the road surface
- ii) the work done in ascending the slope
- iii) the average power developed by the engine

Solution



The picture shows forces acting on the vehicle. There are: the gravitational force $\vec{Q} = m\vec{g}$, the reaction of road's surface \vec{R} and frictional force \vec{F} , working against the vehicle's velocity \vec{v} . The problem's text claims that the vehicle is ascending so the vectors \vec{v} and \vec{F} have directions as in the picture. The vehicle is moved uphill by the tractive force \vec{T} which does the real work. The force \vec{Q} can be split into 2 compounds: \vec{Q}_p , perpendicular to the road surface and \vec{Q}_t parallel to the road. The vector sum of $\vec{Q}_p + \vec{R}$ gives zero but \vec{Q}_p is that force which causes the frictional resistance.

Using a vector notation one may write the Newton's second law of dynamics for the vehicle as follows:

$$m\vec{a} = \vec{T} + \vec{Q}_t + \vec{F} \quad (1)$$

Because vectors \vec{F} and \vec{Q}_t are opposite to \vec{T} one should take their values with a minus sign in the next equation. In addition because the angle between \vec{Q} and \vec{Q}_p equals α (the same as the slope of the road) the value of \vec{Q}_t may be written as $mg \sin(\alpha)$. Therefore:

$$m\vec{a} = T - mg \sin \alpha - F \quad (2)$$

From the equation (2) one may calculate the value of the tractive effort T . The acceleration a may be calculated as $a = \frac{v}{t}$, where v is the given velocity, ($v = 100 \text{ km/h}$) and t is the acceleration time ($t = 14 \text{ s}$). From eq. (2), substituting a one obtains:

$$T = m \frac{v}{t} + F + mg \sin \alpha \quad (3)$$

Let put numeric values into equation (3). The velocity must be expressed in $\frac{m}{s}$ (by dividing it by 3.6). Sinus α is the "gradient", equals 0.15.

$$T = 700 * \frac{\frac{60}{3.6}}{10} + 500 + 700 * 10 * 0.15 = 2.7 \text{ kN.}$$

The work W done in ascending the slope equals T times s , where s is the slope length. (The vector \vec{T} is parallel the road so $\cos(\varphi)$ equals 1 in the formula for mechanical work). The length s can be calculated from equation (5)

$$s = \frac{1}{2}at^2 = \frac{1}{2}\frac{v}{t}t^2 = \frac{v}{2}t \quad (5)$$

The last formula above on the right side shows that in a uniformly accelerating movement the distance s can be calculated by multiplying time by the average velocity.

Therefore the amount of work W equals:

$$W = Fs = \frac{Tvt}{2} \quad (6)$$

Using the value of F from eq. (4) the above formula gives:

$$W = \frac{1}{2} * 2.7 * 10^3 * \left(\frac{60}{3.6}\right) * 10 = 225 \text{ kJ.} \quad (7)$$

The average power P equals W divided by time t , therefore:

$$P = \frac{W}{t} = \frac{225 \text{ kJ}}{10 \text{ s}} = 22.5 \text{ kW.}$$

Answer: 2.7 kN; 225 kJ; 22.5 kW.