First we can easily find the change of velocity Continuity of flow gives us:

$$
7 \cdot\left(8^{\prime \prime} \times 6^{\prime \prime}\right)=v_{2} \cdot\left(8^{\prime \prime} \times 1.5^{\prime \prime}\right)
$$

and we find that

$$
v_{2}=\frac{7 \cdot\left(8^{\prime \prime} \times 6^{\prime \prime}\right)}{\left(8^{\prime \prime} \times 1.5^{\prime \prime}\right)}=28 \mathrm{ft} / \mathrm{s}
$$

Now we can find change of pressure
Bernoulli's principle tells us, that

$$
v^{2} / 2+p / \rho=\text { const }
$$

where ρ is density of water and p is pressure. Hence

$$
\begin{gathered}
v_{1}^{2} / 2+p_{1} / \rho=v_{2}^{2} / 2+p_{2} / \rho \\
p_{2}-p_{1}=\rho \cdot\left(v_{1}^{2} / 2-v_{2}^{2} / 2\right)=34141.8672 P a
\end{gathered}
$$

Change of pressure approximately is 34 kPa .

