Determine the force, F in lbf, required to lift a five gallon bucket full of water from rest with an acceleration of $3 \mathrm{~m} / \mathrm{s}$. Ignore the mass of the bucket.

Solution:

Let:
$a=3 \mathrm{~m} / \mathrm{c}^{2}$
$V=5$ galon

$$
\begin{aligned}
& F=m g+m a \\
& m=\rho * V=1 * 5 * 4.546=22.73 \mathrm{Kg} ;(1 \text { galon }=4.546 \mathrm{~L}) \\
& F=22.73 * 9.8+22.73 * 3=290.944 \mathrm{~N}=65.41 \mathrm{Lbf} ;(1 \mathrm{Lbf}=4.448 \mathrm{~N})
\end{aligned}
$$

Answer: 65.41 lbf .

