a) $P_{0}=6 ; \quad Q_{0}=550$

$$
P_{1}=6.5 ; \quad Q_{1}=520
$$

\% change of price is

$$
\frac{\Delta P}{P_{1}}=\frac{0.5}{6.5} \approx 0.08
$$

It's 8\%.
\% change of quantity is

$$
\frac{\Delta Q}{Q_{0}}=\frac{30}{550} \approx 0.05
$$

It's 5\%.

$$
P E D=\frac{\% Q_{\text {change }}}{\% P_{\text {change }}}=\frac{5}{8}=0.625
$$

$\mathrm{PED}<1$ - inelastic.
b) $P_{0}=30 ; ~ Q_{0}=30$

$$
P_{1}=27,25 ; \quad Q_{1}-?
$$

$$
P E D=\frac{\% Q_{\text {change }}}{\% P_{\text {change }}}=\frac{\frac{\Delta Q}{Q_{0}}}{\frac{\Delta P}{P_{1}}}=\frac{\Delta Q \cdot P_{1}}{Q_{0} \cdot \Delta P}
$$

$P E D=-1.85$

$$
\frac{\Delta Q \cdot P_{1}}{Q_{0} \cdot \Delta P}=-1.85
$$

$$
\begin{aligned}
& \Delta Q \cdot P_{1}=-1.85 \cdot Q_{0} \cdot \Delta P \\
& \Delta Q=\frac{-1.85 \cdot Q_{0} \cdot \Delta P}{P_{1}}
\end{aligned}
$$

$$
\Delta Q=\frac{-1.85 \cdot 30 \cdot(-2.75)}{27.25} \approx \frac{152.625}{27.25} \approx 6
$$

$\Delta Q=Q_{1}-Q_{0}$
$Q_{1}=\Delta Q+Q_{0}$
$Q_{1}=6+30=36$
c) $Q=450-2.5 P$

First we need to obtain the derivative of the demand function when it's expressed with Q as a function of P . Since quantity (Q) goes down by 2.5 each time price (P) goes up by 1 ,

$$
\frac{\Delta Q}{\Delta P}=-2.5
$$

Next we need to find the quantity demanded at each associated price and pair it together with the price: $(40 ; 350 *)$.
(* Q = 450-2.5P, P=40 : Q=450-100=350)

Then we plug those values into our point elasticity of demand formula to obtain the following:

$$
\begin{aligned}
& e=\frac{\Delta Q}{\Delta P} \cdot\left(\frac{P}{Q}\right) \\
& e=\frac{\Delta Q}{\Delta P} \cdot\left(\frac{P}{Q}\right)=-2.5 \cdot \frac{40}{350}=-0.29 .
\end{aligned}
$$

Answer provided by https://www.AssignmentExpert.com

