QUESTION: You have $\mathbf{\$ 1 0 , 0 0 0}$ dollars and want to invest them in the best possible option.

- Bank A offers to pay 4.1\% compounded quarterly
- Bank B offers to pay 4\% interest, compounded monthly
- Bank C offers to pay 4.1% compounded semesterly

Additionally, petrol/ transport costs to deposit and to collect the money are:

- Bank A is online (assume free)
- Bank B is $\mathbf{\$ 1 5}$ per trip
- Bank C $\$ 12$ per trip.

If you are planning to leave the money in the bank for three years, what option is the best ?

ANSWER.

The formula for annual compound interest, including principal sum, is:
$\mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{r} / \mathbf{n})^{(\mathbf{n t})}$
Where:
$\mathbf{A}=$ the future value of the investment/loan, including interest
$\mathbf{P}=$ the principal investment amount (the initial deposit or loan amount)
$\mathbf{r}=$ the annual interest rate (decimal)
$\mathbf{n}=$ the number of times that interest is compounded per year
$\mathbf{t}=$ the number of years the money is invested or borrowed for

1. For bank A: compounded quarterly using the formulae you get:
$\mathrm{A}=\$ 10,000(1+0.041 / 3)^{3 * 3}$
$\mathrm{A}=\$ 11,299.43$
2. For bank B... compounded monthly
$\mathrm{A}=\$ 10,000(1+0.04 / 12)^{12 * 3}$
$\mathrm{A}=\$ 11,272.72$
3. For bank C... compounded semesterly
$\mathrm{A}=\$ 10,000(1+0.041 / 6)^{6 * 3}$
$\mathrm{A}=\$ 11,304.11$

Petrol/ transport costs to deposit and to collect the money

Bank A is free therefore no cost.
Total=\$11,299.43

Bank B is $\$ 15$ per trip (2 trips, deposit and withdraw)
therefore $\$ 11,272.72-(\$ 15 * 2)=\$ 11,242.72$

Bank C $\$ 12$ per trip (2 trips, deposit and withdraw)
therefore $\$ 11,304.11-(\$ 12 * 2)=\$ 11,280.11$

The best option is bank A which is $\mathbf{\$ 1 1 , 2 9 9 . 4 3}$

