Answer on Question \#73879 -Economics - Microeconomics

Given the production function $Q=30 K K^{0.7} L^{0.5}$ and input prices $r=20$ and $w=30$.
(a) Determine an equation for the expansion path
(b) What is the efficient input combination for an output rate of $Q=200$? For 500 ?

Answer.
a)

Expansion path is determined by the condition

$$
\frac{M P_{L}}{M P_{K}}=\frac{w}{r}
$$

And,

$$
\begin{aligned}
& M P_{L}=\left(30 K^{0.7} L^{0.5}\right)^{\prime}=30 \times 0.5 \times K^{0.7} L^{-0.5}=\frac{15 K^{0.7}}{L^{0.5}} \\
& M P_{K}=\left(30 K^{0.7} L^{0.5}\right)^{\prime}=30 \times 0.7 \times K^{-0.3} L^{0.5}=\frac{21 L^{0.5}}{K^{0.3}}
\end{aligned}
$$

So,

$$
\begin{gathered}
\frac{\frac{15 K^{0.7}}{L^{0.5}}}{\frac{21 L^{0.5}}{K^{0.3}}}=\frac{30}{20} \\
\frac{15 K^{0.7} \times K^{0.3}}{L^{0.5} \times 21 L^{0.5}}=\frac{30}{20} \\
\frac{5 K}{7 L}=\frac{3}{2} \\
10 K=21 L
\end{gathered}
$$

The equation of expansion path is

$$
10 K-21 L=0
$$

b)

We have to solve the system of equations

$$
\begin{gathered}
30 K^{0.7} L^{0.5}=200 \\
10 K=21 L
\end{gathered}
$$

And, if $\mathrm{K}=2.1 \mathrm{~L}$ then

$$
\begin{aligned}
& 30 \times(2.1 L)^{0.7} L^{0.5}=200 \\
& 30 \times(2.1 L)^{0.7} L^{0.5}=200 \\
& 50.43 L^{1.2}=200 \\
& \quad L=3.15 \\
& \quad K=2.1 \times 3.15=6.62
\end{aligned}
$$

The efficient input combination for an output rate of $Q=200$ is
L=3.15
K=6.62

The efficient input combination for an output rate of $Q=500$ is calculated from
$50.43 L^{1.2}=500$
$L=6.76$
$K=2.1 \times 3.15=14.2$
Answer provided by https://www.AssignmentExpert.com

