Answer on Question \#71629, Economics / Microeconomics

Use the following market demand and supply equations to answer questions a and $b Q_{d}=100$ P, and $Q_{s}=10+2 P$ and $A T C=0.5 Q$
a) Calculate the competitive market's profit-maximizing price, quantity, and profit.

Answer:

a)

If the demand function is $Q_{d}=100-P$ and the supply function is $Q_{s}=10+2 P$
set
$100-\mathrm{P}=10+2 \mathrm{P}$
and solve for P
$90=3 P$
$\mathrm{P}=30$
Therefore the price is 30 .
To solve the quantity, substitute 30 for P in either the demand function or the supply function.
$100-\mathrm{P}=100+30=15-6=70$
$10+2 \mathrm{P}=10+2(30)=10+60=70$
Therefore the profit maximization quantity is 70 .
Then the total revenue, which is ($\mathrm{P} \times \mathrm{Q}$)
$T R=30 Q$
To find total Costs
Average Costs = Total Costs/ Q
Total Costs $=$ Average Costs $\times Q=0.5 Q \times Q=0.5 Q^{2}$

To find to the profit
Profit $=T R-T C$
Profit $=30 \mathrm{Q}-0.5 \mathrm{Q}^{2}$
Profit $=30 \times 70-0.5 \times 70^{2}$
Profit $=2100-2450$
Profit $=350$

Answer provided by https://www.AssignmentExpert.com

