\#68538 Chemistry, Other

What is the final solution pH after $60 \mathrm{~mL} 0.05 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is mixed with $25 \mathrm{~mL} 0.20 \mathrm{M} \mathrm{HNO}_{3}$?

Answer:

$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3}=\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong alkali. HNO_{3} is a strong acid.

In order to determine pH , we have to determine limiting reagent.

According to equation, $\mathrm{n}\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)=2 \cdot \mathrm{n}\left(\mathrm{HNO}_{3}\right)$
$C_{M}=n / V \quad n=C_{M} \cdot V$
$\mathrm{n}\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)=0.05 \cdot 60=3 \mathrm{mmol}$
$\mathrm{n}\left(\mathrm{HNO}_{3}\right)=0.2 \cdot 25=5 \mathrm{mmol} \quad$ But it must be: $2 \cdot \mathrm{n}\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)=3 \cdot 2=6 \mathrm{mmol}$

Therefore, HNO_{3} is the limiting reagent. There will be an excess of $\mathrm{Ba}(\mathrm{OH})_{2}$ of $(3-5 / 2=0.5 \mathrm{mmol})$ with an anticipated basic pH .

```
pOH = - lg[0.0005] = 3.3
pH+pOH = 14
pH=14-3.3 = 10.7
```

