Question\#65485

Suppose that Billy's preferences over baskets containing milk (good x), and coffee (good $y)$, are described by the utility function $U(x ; y)=x y+2 x$. Billy's corresponding marginal utilities are, $M U x=y+2$ and $M U y=x$.

Use Px to represent the price of milk, Py to represent the price of coffee, and I to represent Billy's income.

Suppose that $\mathrm{Px}=\$ 1$ and $\mathrm{I}=\$ 40$. Find the equivalent variation for an increase in the price of coffee from Py1 = \$4 to Py2 = \$5.

Solution: The budget constraint is: $\mathrm{p}_{\mathrm{x} X}+\mathrm{p}_{\mathrm{y}} \mathrm{y}=\mathrm{I}$. Or: $\mathrm{x}+4 \mathrm{y}=40$. In the point of the local consumer market equilibrium the following equation must be implemented:

MUx / MUy=Px/Py.
So, before an increase in the price of coffee we have the next equation:
$(y+2) / x=1 / 4$. So, $x=4(y+2)$.
After substitution of the last expression to the budget constraint we obtain the following: $4(y+2)+4 y=40,8 y+8=40, y=(40-8) / 8=4$.
$X=4(y+2)=4(4+2)=24$.
So, the utility maximizing bundle is $x=24, y=4$.
After increase in the price of coffee the new budget constraint is: $x^{*}+5 y^{*}=40$, $\left(y^{*}+2\right) / x^{*}=1 / 5, x^{*}=5\left(y^{*}+2\right)$. So, $5\left(y^{*}+2\right)+5 y=40,10 y^{*}+10=40, y^{*}=3, x^{*}=5(3+2)=25$.

The new utility maximizing bundle is $(25 ; 3)$.
Such the consumption bundle cost before an increase in the price of coffee: $I^{*}=x^{*}+4 y^{*}=25+4^{*} 3=37$.
So, the equivalent variation for an increase in the price of coffee from Py1 = \$4 to Py2 = \$5 is:

$$
\mathrm{EV}=\mathrm{I}-\mathrm{I}^{*}=40-37=3
$$

Answer: The equivalent variation for an increase in the price of coffee is 3 units of income.

Answer provided by https://www.AssignmentExpert.com

