Answer on Question #64983

What is the value of the balanced budget multiplier. IE what multiple of delta does Y increase?

Answer

My approach to this problem is the following:

- 1. Find quarter data for real GDP and Consumption from the links you have given to define MPC= $\frac{\Delta C}{\Delta Y}$, where C and Y are consumption and real GDP. ΔC and ΔY are changes of C and Y. For example ΔC is a difference between consumption of 4th quarter of 2016 and the consumption of 4th quarter of 2015.
- 2. Calculate average MPC for all available years. For instance for our case it will cover from 1951 Q1 to 2016 Q4
- 3. Define K^G , which is representing government expenditure multiplier: $\Delta Y = \frac{1}{1-MPC} \Delta G$
- 4. Define K^T , which is tax multiplier: $\Delta Y = \frac{-MPC}{1-MPC} \Delta T$. Here T is tax and ΔT its change
- 5. Finally in this point we can assume BBM= $K^G + K^T$

The solutions:

- \rightarrow MPC \approx 0.30. This means that for the quarter period of [1959-2016] the income is divided between 30% consumption and 70% saving.
- \rightarrow After putting 0.30 into the formula $\Delta Y = \frac{1}{1-MPC} \Delta G$, we will get $K^G = 1.42$. This shows that if expenditures increase the real GDP will go up 1.42 times.
- \rightarrow K^T will be equal to -0.43, if MPC=0.30. The explanation for this is that increase in taxies will cut GDP by the 0.43 times.
- \rightarrow Eventually BBM=0.99.