Answer on Question \#51497, Economics, Finance

Power of Tower Inc. has bonds that mature in $6 \frac{1}{2}$ years with a par value of RM1,000. They pay a coupon rate of 9% with semiannual payments. If the required rate of return on these bonds is 11% what is the bond's current value?

Solution:

In given task we have the following data. Future value $=1,000$, Total number of coupon payments $=\left(6.5^{*} 2=13\right)$, Coupon rate $=4.5 \%$ (0.045 semi-annually), Required rate of return $=5.5 \%$ (0.055 semi-annually). Firstly we can determine the future value Payment (PMT). We apply the following formula.

$$
\text { PMT }=\text { Coupon Rate } \times \text { Future value }
$$

We substitute the given values into the noted above formula.

$$
\mathrm{PMT}=0.045 \times 1,000=45
$$

Now our challenge is to define the bond's current value. We apply the following formula for calculation.

$$
\text { Present Value }=\left(\frac{\mathrm{PMT} \cdot \mathrm{k}}{\mathrm{ip}}-\text { Future value }\right) \cdot \frac{1}{(1+\mathrm{ip})^{N}}-\frac{\mathrm{PMT} \cdot \mathrm{k}}{\mathrm{ip}}
$$

Where:
PV = Present Value
PMT $=45$ (Payment)
$\mathrm{k}=1$ if payment is made at the end of the period; $1+\mathrm{ip}$ if made at the beginning of the period FV = 1,000 (Future Value);
ip = 5.5\% (Interest Rate per period);
$N=13$ (Number of periods).
Now we can substitute the given values into the formula in order to find the Present value.

$$
\text { Present Value }=\left(\frac{45 \cdot 1}{0.055}-1,000\right) \cdot \frac{1}{(1+0.055)^{13}}-\frac{45 \cdot 1}{0.055}
$$

Simplify the obtained equation.

$$
\begin{aligned}
\text { Present Value } & =(818.181-1,000) \cdot(0.498561)-818.181 \\
& =(-181.818 \cdot 0.499)-818.181=-90.647-818.181=-908.829
\end{aligned}
$$

Thus, the Present value is equal to RM908.829.

