A. If $\mathrm{L}=1$ and $\mathrm{K}=1$, the cost of producing any given output is minimized and $\mathrm{Q}=1^{*} 1 \wedge 2=1$ Since the lower bound is valid for every $y \geq 0$, we can search for the best one, that is, the largest lower bound:
$p^{*} \geq d^{*}:=\max _{y \geq 0} g(y)$.
The problem of finding the best lower bound:
$d^{*}:=\max _{y \geq 0} g(y)$
is called the dual problem associated with the Lagrangian defined above. It optimal value d^{*} is the dual optimal value. As noted above, g is concave. This means that the dual problem, which involves the maximization of g with sign constraints on the variables, is a convex optimization problem.

Example: For the problem of minimum distance to a polyhedron above, the dual problem is

$$
d^{*}=\max _{y \geq 0} g(y)=\max _{y \geq 0}-b^{T} y-\frac{1}{2}\left\|A^{T} y\right\|_{2}^{2}
$$

