Answer on Question \#38924 - Economics - Microeconomics

The set of all affordable bundles is called the budget set. If all the money is spent on the first good, then m / p units can be purchased. Thus the bundle $(\mathrm{m} / \mathrm{p}, 0)$ is in the budget set. If all the money is spent on the second good, then m / q units can be purchased. Thus the bundle $(0, \mathrm{~m} / \mathrm{q})$ is in the budget set. The budget set consists of all those bundles with non-negative amounts of both goods that lie on or below the budget line, $\mathrm{px}+\mathrm{qy}=\mathrm{m}$. One type of solution is a corner solution, at which the budget equation must hold, but the tangency condition need not hold. The optimal bundle is D , since none of the bundles above the indifference curve through D are affordable. The indifference curve through D is not tangent to the budget line, and the equality of marginal "bang for the buck" does not hold. Instead, $\mathrm{U} 1\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right) / \mathrm{p}>\mathrm{U} 2\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right) / \mathrm{q}$ with $\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)=(\mathrm{m} / \mathrm{p}, 0)$.

So, the right answer is D. The marginal rate of substitution is less than the ratio of prices at the optimal bundle.

