resource A and B (labor and capital).
$P x=\$ 50$.
Qa MPa Qb MPb
112120
$\begin{array}{llll}2 & 11 & 2 & 18\end{array}$
$\begin{array}{llll}3 & 10 & 3 & 16\end{array}$
$\begin{array}{llll}4 & 9 & 4 & 14\end{array}$
$\begin{array}{llll}5 & 8 & 5 & 12\end{array}$
$\begin{array}{llll}6 & 6 & 6 & 10\end{array}$
$\begin{array}{llll}7 & 5 & 7 & 8\end{array}$
8386
$P A=\$ 250$ and $P B=\$ 400$.
Solution:
We can find maximized profit from the formula:
$\mathrm{TP}=\mathrm{TR}-\mathrm{TC}=\mathrm{Pa}^{*} \mathrm{q}-(\mathrm{PA}+\mathrm{PB})=\max$
Value of marginal products of labor and capital should be equal to their wages and rental rate respectively, so:
$\mathrm{Px} \mathrm{MPa}=\mathrm{PA}, 50 * \mathrm{MPa}=250, \mathrm{MPa}=5$,
$\mathrm{Px}^{*} \mathrm{MPb}=\mathrm{PB}, 50^{*} \mathrm{MPb}=400, \mathrm{MPb}=8$, so we can see from the table, that $\mathrm{q}=7$
Now we can calculate maximizing profit:
TP $=50 * 7-(250+400)=-300$ thousand dollars.
So, there is a loss, that is minimized.

