Bond M has face value of $\$ 40,000$ \& matures in 20 years, makes no payments for 1 st 6 years, then $\$ 1500$ every 6 months for 8 years, then pays $\$ 1800$ every 6 months for last 6 years. Bond N has face value of $\$ 40,000$ \& maturity 20 years \& makes no coupon payments over the life of the bond. Required rate on both is 12% compounded semiannually, what is the current price of each bond?

Solution.

Consider bond M . Discount rate is $0.12 / 2=0.06$ for semi-annual and total numbers of periods is 20 years $\cdot 2($ per year $)=40$.

So
Cash flows for periods 1-12: 0.
Cash flows for periods 13-28:

$$
\frac{\$ 1500}{(1+0.06)^{13}}+\frac{\$ 1500}{(1+0.06)^{14}}+\cdots+\frac{\$ 1500}{(1+0.06)^{28}}=\sum_{i=13}^{28} \frac{\$ 1500}{(1+0.06)^{i}}=\$ 7533.48
$$

Cash flows for periods 29-39:

$$
\frac{\$ 1800}{(1+0.06)^{29}}+\frac{\$ 1800}{(1+0.06)^{30}}+\cdots+\frac{\$ 1800}{(1+0.06)^{39}}=\sum_{i=29}^{39} \frac{\$ 1800}{(1+0.06)^{i}}=\$ 2777.24
$$

And final payment is par plus the last coupon payment:

$$
\frac{\$ 40000+\$ 1800}{1.06^{40}}=\$ 4063.89
$$

Price is the sum of all the discounted cash flows:

$$
P V_{M}=\$ 7533.48+\$ 2777.24+\$ 4063.89=\$ 14374.61
$$

Consider bond N. We have only one cash flow - at maturity.
So

$$
P V_{N}=\frac{40000}{1.06^{40}}=\$ 3888.89
$$

Answer: $P V_{M}=\$ 14374.61 ; P V_{N}=\$ 3888.89$.

