Find the present value, using the present value formula and a calculator. (Round your answer to the nearest cent.) Achieve $\$ 225,500$ at 8.45% compounded continuously for 8 years, 145 days.

Solution:

The present value, PV; of a future payment FV; is the amount that would have to be deposited in a bank account today to produce exactly FV in the account at the relevant time future. If interest is compounded n times a year at an annual rate r for t years, then the relationship between $F V$ and $P V$ is given by the formula:

$$
F V=P V\left(1+\frac{r}{n}\right)^{n t}
$$

$P V$ - is the Present value;
r - is the interest rate (expressed as a decimal);
n - is the number of compounding a year;
t - is the total number of years.
From this formula we can find Present value:

$$
P V=\frac{F V}{\left(1+\frac{r}{n}\right)^{n t}}
$$

But in our case we have the continuous compound interest, the formula is given by:

$$
F V=P V e^{r t}
$$

From formula find $P V$:

$$
P V=\frac{F V}{e^{r t}}
$$

The present value with continuous compounding formula is used to calculate the current value of a future amount that is earned at a continuously compounded rate. There are three concepts to consider in the present value with continuous compounding formula: time value of money, present value, and continuous compounding.

Time Value of Money - The present value with continuous compounding formula relies on the concept of time value of money. Time value of money is the idea that a specific amount today is worth more than the same amount at a future date.

Present Value - The basic premise of present value is the time value of money.
Continuous Compounding - Continuous Compounding is essentially compounding that is constant. Ordinary compounding will have a compound basis such as monthly, quarterly, semiannually, and so forth. However, continuous compounding is nonstop, effectively having an infinite amount of compounding for a given time.

In our task we can find Present value using formula notice below:

$$
P V=\frac{F V}{e^{r t}}
$$

$F V-$ future value $=\$ 225,500$
$e \approx 2.7182818284$
$r=8.45 \%$
$n=\frac{145}{365}=0.397260274$
We have total amount of compounded continuously 8 years, so $n=(0.397260274+8)=$ 8,397260274
$n=8,397260274$

$$
P V=\frac{\$ 225,500}{2.7182818284^{(0.0845 \cdot 8,397260274)}}=\$ 110,913.616
$$

Present value equals $=\$ 110,913.62$
Answer: $P V=\$ 110,913.62$

