Task\#85363

What is zero point energy? Calculate the number of normal modes of vibration for the following compounds:

(i) PF3 (ii) CINO (iii) XeF2

Soution: The vibration energy of a molecule is given by $E=(v+1 / 2) h v$ where, $v=$ vibrational quantum number, $v=$ frequency of vibration of the bond, At $0 \mathrm{KE}_{0}=(1 / 2) \mathrm{h} v$, where, $\mathrm{E}_{0}=$ zero point energy.

That means even at 0 K temperature bond is vibrating
In order to describe a point in 3d space we need three co-ordinates. So total degree of freedom $=3$. So molecules containing N number of atoms $=3 \mathrm{~N}$,

Among 3 N degrees of freedom there are 3 translational degrees of freedom along co-ordinate axis and 3 rotational degrees of freedom for non-linear molecules, 2 for linear molecules. Since for linear molecules rotation along its bond axis does not change its co-ordinates.

Therefore ,Total number of vibrational degrees of freedom for linear molecules=(3N-5)
And for non-linear molcules=(3N-6)
(i) $\mathbf{P F}_{3}$:Shape-Trigonal pyramidal(Non-linear)

Therefore ,Total number of vibrational degrees of freedom= $=(3 \times 4)-6=6$
The number of normal modes of vibration=6
(ii)CINO:Shape: V shaped(Non-linear)

Therefore ,Total number of vibrational degrees of freedom $=(3 \times 3)-6=3$
The number of normal modes of vibration=3
(iii) XeF2: Shape: Linear

Therefore ,Total number of vibrational degrees of freedom $=(3 \times 3)-5=4$
The number of normal modes of vibration=4

