Answer on Question \#85059 - Chemistry - Other

Task:

In an extremely explosive reaction between Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and Oxygen, 294.7 g of water is produced when 500 grams of glucose is combusted. What is the percent yield of this reaction? (remember that the products of a combustion reaction are water and carbon dioxide).

Solution:

The equation for the combustion of glucose is:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}=6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Molar Masses of Glucose and Water:

$$
\begin{aligned}
& M\left(C_{6} H_{12} O_{6}\right)=6 * A r(C)+12 * A r(H)+6 * A r(O) \\
& M\left(C_{6} H_{12} O_{6}\right)=6 * 12+12 * 1+6 * 16=180 g / \mathrm{mol} \\
& M\left(\mathrm{H}_{2} \mathrm{O}\right)=2 * \operatorname{Ar}(H)+\operatorname{Ar}(O)=2 * 1+16=18 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

According to the chemical reaction equation:

$$
\begin{aligned}
& n\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=\frac{n\left(\mathrm{H}_{2} \mathrm{O}\right)}{6} \\
& \frac{m\left(\mathrm{C}_{6} H_{12} \mathrm{O}_{6}\right)}{M\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)}=\frac{m\left(\mathrm{H}_{2} \mathrm{O}\right)}{6 * M\left(\mathrm{H}_{2} \mathrm{O}\right)}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& m_{\text {theor }}\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{6 * M\left(\mathrm{H}_{2} \mathrm{O}\right) * m^{2}\left(\mathrm{C}_{6} H_{12} O_{6}\right)}{M\left(\mathrm{C}_{6} H_{12} \mathrm{O}_{6}\right)} \\
& m_{\text {theor }}\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{6 * 18 \mathrm{~g} / \mathrm{mol} * 500 \mathrm{~g}}{180 \mathrm{~g} / \mathrm{mol}}=300 \mathrm{~g}
\end{aligned}
$$

The percentage yield is calculated by dividing the amount of the obtained desired product by the theoretical yield:

$$
\text { percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} * 100 \%
$$

$$
\begin{aligned}
& m_{\text {theor }}\left(\mathrm{H}_{2} \mathrm{O}\right)=300 \mathrm{~g} \\
& m_{\text {actual }}\left(\mathrm{H}_{2} \mathrm{O}\right)=294.7 \mathrm{~g}
\end{aligned}
$$

Since less than what was calculated was actually produced, it means that the reaction's percent yield must be smaller than 100%.
$\%$ yield $=\frac{m_{\text {actual }}\left(\mathrm{H}_{2} \mathrm{O}\right)}{m_{\text {theor }}\left(\mathrm{H}_{2} \mathrm{O}\right)} * 100 \%$
$\%$ yield $=\frac{294.7 g}{300 g} * 100 \%=98.23 \%$
$\%$ yield $=98.23 \%$

Answer: 98.23% is the percent yield of this reaction.

