Answer on Question \#85043 - Chemistry - Other

Task:

A sample of CaCO_{3} of mass 2.8 g was reacted with $75 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloride acid. The resulting solution was completely transferred into $250 \mathrm{~cm}^{3}$ of volumetric flask and the mixture made up to the mark with distilled water. $25 \mathrm{~cm}^{3}$ of this solution needed $20.05 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ of NaOH to neutralize the excess acid. Calculate the percentage of CaCO_{3} present in the sample.

Solution:

Reaction of neutralization of excess hydrochloric acid:

$$
\mathrm{HCl}+\mathrm{NaOH}=\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

According to the chemical reaction equation:

$$
\begin{aligned}
& n(\mathrm{HCl})=n(\mathrm{NaOH}) \\
& n(\mathrm{HCl})=C(\mathrm{NaOH}) * V(\mathrm{NaOH})
\end{aligned}
$$

Then,
$n_{\text {excess }}(\mathrm{HCl})=1.0 \mathrm{~mol} / \mathrm{dm}^{3} * 0.02005 \mathrm{dm}^{3}=0.02005 \mathrm{~mol}$
$n_{\text {excess }}(\mathrm{HCl})=0.02005 \mathrm{~mol}$
Correcting for the aliquoting/dilution factor, you have:

$$
\begin{aligned}
& n_{\text {excess }}^{0}(\mathrm{HCl})=\frac{V_{f}}{V_{a}} * n_{\text {excess }}(\mathrm{HCl})=\frac{250 \mathrm{~cm}^{3}}{25 \mathrm{~cm}^{3}} * 0.02005 \mathrm{~mol}=0.2005 \mathrm{~mol} \\
& n_{\text {excess }}^{0}(\mathrm{HCl})=0.2005 \mathrm{~mol} \\
& n_{\text {total }}(\mathrm{HCl})=C(\mathrm{HCl}) * V_{\text {total }}(\mathrm{HCl})=1.0 \mathrm{~mol} / \mathrm{dm}^{3} * 0.075 \mathrm{dm}^{3}=0.075 \mathrm{~mol} \\
& n_{\text {total }}(\mathrm{HCl})<n_{\text {excess }}^{0}(\mathrm{HCl})=0.075 \mathrm{~mol}<0.2005 \mathrm{~mol}
\end{aligned}
$$

There is a error with the way the question is presented because according to the above calculations, there is more HCl left over (in excess) than there was originally added.
$n(\mathrm{HCl})=n_{\text {total }}(\mathrm{HCl})-n_{\text {excess }}^{0}(\mathrm{HCl})$
Reaction of CaCO_{3} with hydrochloric acid:

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl}=\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

According to the chemical reaction equation:

$$
\begin{aligned}
& n\left(\mathrm{CaCO}_{3}\right)=\frac{n(\mathrm{HCl})}{2}=\frac{n_{\text {total }}(\mathrm{HCl})-n_{\text {excess }}^{0}(\mathrm{HCl})}{2} \\
& m\left(\mathrm{CaCO}_{3}\right)=n\left(\mathrm{CaCO}_{3}\right) * M\left(\mathrm{CaCO}_{3}\right)=\left(\frac{n_{\text {total }}(\mathrm{HCl})-n_{\text {excess }}^{0}(\mathrm{HCl})}{2}\right) * M\left(\mathrm{CaCO}_{3}\right)
\end{aligned}
$$

Then,
$m^{o}\left(\mathrm{CaCO}_{3}\right)=2.8 \mathrm{~g}$
$\%$ yield $=\frac{m\left(\mathrm{CaCO}_{3}\right)}{m^{o}\left(\mathrm{CaCO}_{3}\right)} * 100 \%=\frac{m\left(\mathrm{CaCO}_{3}\right)}{2.8 g} * 100 \%$

Answer: Error in the task. Problem is that more HCl left over (0.2005 moles) than was originally present (0.075 moles).

