Task
Ethanol (the alcohol used in "potent potables") undergoes a combustion reaction with the following
stoichiometry:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}=-1371 \mathrm{~kJ} / \mathrm{mol}$ of rxn

What is the total heat absorbed by the surroundings (in kJ) when 25.0 g of ethanol combusts in the presence of excess oxygen at constant pressure?

Solution

1)During the combustion reaction, 1 mol of ethanol releases 1371 kJ of heat.
2)Calculate how many moles of ethanol are contained in 25 g (M (Molecular weight of ethanol)= $50 \mathrm{~g} / \mathrm{mol}$)
$n=\frac{m}{M}=\frac{25}{50}=0,5(\mathrm{~mol})$
3)This means that during the burning of $0,5 \mathrm{~mol}$ of ethanol the following amount of heat is released:
$\Delta Q=-\Delta H^{*} n=0,5^{*} 1371=685,5(\mathrm{~kJ})$

Answer

The total heat absorbed by the surroundings is $\Delta \mathrm{Q}=685,5 \mathrm{~kJ}$ (exothermic reaction)

