How many molecules of hydrogen gas are formed when 24.6 g of sodium are added to water.
Show your work.

Solution

$$
\begin{aligned}
& 2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \uparrow \\
& \mathrm{M}(\mathrm{Na})=22.989 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{n}(\mathrm{Na})=\frac{m}{M}=\frac{24.6}{22.989}=1.07 \mathrm{~mol} \\
& \mathrm{n}\left(\mathrm{H}_{2}\right)=\frac{n(\mathrm{Na})}{2}=\frac{1.07}{2}=0.535 \mathrm{~mol} \\
& \mathrm{~N}\left(\mathrm{H}_{2}\right)=n\left(\mathrm{H}_{2}\right) \cdot N_{A}=0 \cdot 535 \cdot 10^{23}=535 \cdot 10^{20}
\end{aligned}
$$

Answer: $\mathrm{N}\left(\mathrm{H}_{2}\right)=535 \cdot 10^{20}$

