Answer on Question \#84287 - Chemistry - General Chemistry

Task:

How many liters of NH_{3} are needed to react completely with 16.0 L of NO (at STP)?

Solution:

The balance chemical equation is as follow,

$$
4 \mathrm{NH}_{3}+6 \mathrm{NO}=5 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

One mole of an ideal gas at STP occupies 22.4 liters. $\left(\mathrm{V}_{\mathrm{m}}=22.4 \mathrm{~L} / \mathrm{mol}\right)$.
According to equation,
$\frac{n\left(\mathrm{NH}_{3}\right)}{4}=\frac{n(\mathrm{NO})}{6}$;
$n=\frac{V}{V_{m}} ;$
$\frac{V\left(\mathrm{NH}_{3}\right)}{4 * V_{m}}=\frac{V(\mathrm{NO})}{6 * V_{m}}$;
$\frac{V\left(\mathrm{NH}_{3}\right)}{2}=\frac{V(\mathrm{NO})}{3}$;
$V\left(\mathrm{NH}_{3}\right)=\frac{2 * V(\mathrm{NO})}{3}=\frac{2 * 16.0 \mathrm{~L}}{3}=10.67 \mathrm{~L}$
$V\left(\mathrm{NH}_{3}\right)=10.67 \mathrm{~L}$

Answer: 10.67 liters of NH_{3}.

