Calculate $[H_3O^+]$ and $[OH^-]$ for a solution with pH=6.0

Solution: The pH formula is: $pH=-log_{10}[H_3O^+]$; We can directly calculate the [H₃O⁺] value by expressing it from the formula above: $[H_3O^+]=10^{-pH}=10^{-6} \text{ mol/L};$

The $[H_3O^+]$ and $[OH^-]$ concentrations are bind through ionization constant of water, K_w: $K_w = [H_3O^+]^*[OH^-];$

Then, the concentration of [OH-] is equal to:

 $[OH^{-}] = \frac{K_{W}}{[H_{3}O^{+}]} = \frac{10^{-14}}{10^{-6}} = 10^{-8} \text{ mol/L};$

(As the temperature not specified, we assume that K_w is equal to $10^{\cdot 14}$ – this is the value of constant at 25°C)

Answer:

 $[H_3O^+]=10^{-6} \text{ mol/L}; [OH^-]=10^{-8} \text{ mol/L};$

Answer provided by www.AssignmentExpert.com