Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for a solution with $\mathrm{pH}=6.0$

Solution:

The pH formula is:
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$;
We can directly calculate the $\left[\mathrm{H}_{3} 0^{+}\right]$value by expressing it from the formula above:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-6} \mathrm{~mol} / \mathrm{L}$;
The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$concentrations are bind through ionization constant of water, K_{w} :
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{*}\left[\mathrm{OH}^{-}\right]$;
Then, the concentration of [OH^{-}] is equal to:
$\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{10^{-14}}{10^{-6}}=10^{-8} \mathrm{~mol} / \mathrm{L}$;
(As the temperature not specified, we assume that K_{w} is equal to 10^{-14} - this is the value of constant at $25^{\circ} \mathrm{C}$)

Answer:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6} \mathrm{~mol} / \mathrm{L} ;\left[\mathrm{OH}^{-}\right]=10^{-8} \mathrm{~mol} / \mathrm{L} ;$

