How many molecules are contained in a 3.36 mole sample of NH_{3} ? Need written out formula please.

Solution:

We can determine the number of moles either by one of the three formulas, mentioned below:
$\mathrm{n}\left(\mathrm{NH}_{3}\right)=\frac{m\left(\mathrm{NH}_{3}\right)}{M\left(\mathrm{NH}_{3}\right)}$, $\left(\right.$ where $\mathrm{m}-$ mass of $\mathrm{NH}_{3}, \mathrm{M}-$ molar mass of NH_{3});
or
$\mathrm{n}\left(\mathrm{NH}_{3}\right)=\frac{V\left(\mathrm{NH}_{3}\right)}{V_{m}}$, (where $\mathrm{V}-$ volume of $\mathrm{NH}_{3}, \mathrm{~V}_{\mathrm{m}}-$ molar volume);
or
$\mathrm{n}\left(\mathrm{NH}_{3}\right)=\frac{N\left(\mathrm{NH}_{3}\right)}{N_{A}}$, (where N - number of molecules of $\mathrm{NH}_{3}, \mathrm{~N}_{\mathrm{A}}$ - Avogadro constant);
We can express a number of molecules of NH_{3} (N variable) from the third equation, mentioned above:
$\mathrm{N}\left(\mathrm{NH}_{3}\right)=n\left(\mathrm{NH}_{3}\right) * N_{A}=3.36 \mathrm{~mol} * 6.02 * 10^{23}$ molecules $/ \mathrm{mol}=2.02272 * 10^{24}$ molecules;

Answer:
There are $2.02272^{*} 10^{24}$ molecules of ammonia in 3.36 moles.

