Question \#83994, Chemistry / General Chemistry | for completion

200 cm 3 of 0.45 M HCL solution was added to 300 cm 3 of 0.25 M NaOH solution. Calculate the concentration of chloride ions in solution

Solution.
$\mathrm{V}(\mathrm{HCl})=200 \mathrm{~cm}^{3}=200 \mathrm{ml}=0.21$
$\mathrm{Cm}(\mathrm{HCl})=0.45 \mathrm{M}$
$\mathrm{V}(\mathrm{NaOH})=300 \mathrm{~cm}^{3}=300 \mathrm{ml}=0.31$
$\mathrm{Cm}(\mathrm{NaOH})=0.25 \mathrm{M}$
$\mathrm{Cm}(\mathrm{Cl}-)$-?
$\mathrm{HCl}+\mathrm{NaOH}=\mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}$
$\mathrm{n}(\mathrm{HCl})=\mathrm{Cm} * \mathrm{~V}(\mathrm{HCl})=0.45^{*} 0.2=0,09 \mathrm{moles}$

Then, In solution there are 0.09 moles of $\mathrm{Cl}-$, because 1 mole of HCl contains one mole of $\mathrm{Cl}-$
$\mathrm{n}(\mathrm{NaOH})=\mathrm{Cm} * \mathrm{~V}(\mathrm{NaOH})=0.25^{*} 0.3=0,075 \mathrm{moles}$
HCl is in excess, mole ratio from the reaction equation is 1:1.
Extra $\mathrm{HCl}: \mathrm{n}(\mathrm{HClexc})=0.09-0.075=0.015$ moles. And it contains 0.015 moles of $\mathrm{Cl}-$
0.075 moles of HCl reacts with NaOH , and NaCl is formed.
$\mathrm{n}(\mathrm{NaCl})=\mathrm{n}(\mathrm{NaOH})=0.075$ moles. And 0.075 moles of NaCl contsins 0.075 moles of $\mathrm{Cl}-$
NaCl in solution is fully dissociated:
$\mathrm{NaCl}=\mathrm{Na}++\mathrm{Cl}-$
So, full $n(C l-)=0.075+0.015=0.09$ moles
$\mathrm{C}(\mathrm{Cl}-)=\mathrm{n} / \mathrm{V}$
We can suggest that densities of these two solutions are equal to density of H 2 O . Then, we may:

Vsum $=\mathrm{V}(\mathrm{NaOH})+\mathrm{V}(\mathrm{H} 2 \mathrm{O})=0.2+0.3=0.5 \mathrm{I}$
$\mathrm{C}(\mathrm{Cl}-)=0.09 / 0.5=0,18 \mathrm{M}$

Answer:
$\mathrm{C}(\mathrm{Cl}-)=0,18 \mathrm{M}$

Answer provided by AssignmentExpert.com

