Answer on Question \#83812 - Chemistry - General Chemistry

Question

A container of Carbon Dioxide has a pressure of 755 mmHg at 325 K . If the temperaure is decreased to 295 K , what is the pressure of the gas in the container?

Solution

For comparing the sample of gas under two different conditions, the combined gas law can be used:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} .
$$

The volume of container does not change $\left(V_{1}=V_{2}\right)$, therefore it can be reduced:

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}(\text { Gay }- \text { Lussac's law }) .
$$

Then,

$$
P_{2}=\frac{P_{1} T_{2}}{T_{1}}=\frac{755 \mathrm{mmHg} \times 295 \mathrm{~K}}{325 \mathrm{~K}} \approx 685.3 \mathrm{mmHg} .
$$

Answer: If the temperature equals 295 K , the pressure equals 685.3 mmHg .

