A small 4.49 L oxygen tank is pressurized to 145 atm at $29.05^{\circ} \mathrm{C}$. What is the mass in grams of oxygen, O_{2}, under these conditions?
$\mathrm{V}\left(\mathrm{O}_{2}\right)=4.49 \mathrm{~L}=4.49^{*} 10^{-3} \mathrm{~m}^{3}$
$\mathrm{T}=29^{\circ} \mathrm{C}=29.05+273=302.05 \mathrm{~K}$
$\mathrm{p}=145 \mathrm{~atm}=14629 \mathrm{kPa}$
$\mathrm{m}\left(\mathrm{O}_{2}\right)$ - ?
The ideal gas law:
$\mathrm{P} * \mathrm{~V}=\mathrm{m} * \mathrm{R} * \mathrm{~T} / \mathrm{M}$
$\mathrm{m}\left(\mathrm{O}_{2}\right)=\mathrm{p}^{*} \mathrm{~V}\left(\mathrm{O}_{2}\right)^{*} \mathrm{M}\left(\mathrm{O}_{2}\right) / \mathrm{R} * \mathrm{~T}$
$\mathrm{m}\left(\mathrm{O}_{2}\right)=\left(14629 * 10^{3} \mathrm{~Pa} * 4.49 * 10^{-3} \mathrm{~m}^{3} * 32 \mathrm{~g} / \mathrm{mol}\right) /(8.31 \mathrm{~J} / \mathrm{mol} * \mathrm{~K} * 302.05 \mathrm{~K})=$ 837.53 g

