Question:
The value of Kc is 4.24 at 800 Kelvin temperature for the reaction --> $\mathrm{CO}(\mathrm{g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g})$-----> $\mathrm{CO} 2(\mathrm{~g})+$ $\mathrm{H} 2(\mathrm{~g})$. If initial concentration is 0.10 M . Find the concentration of each components.

Solution:

$\mathrm{CO}(\mathrm{g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g})=\mathrm{CO} 2(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g})$

0.1 M	0.1 M	0	0
-x	-x	x	x
$0.1-\mathrm{x}$	$0.1-\mathrm{x}$	x	x

$K c=x^{\wedge} 2 /(0.1-x)^{\wedge} 2 ;$
$4.24=x^{\wedge} 2 /(0.1-x)^{\wedge} 2 ;$
$x^{\wedge} 2=4.24\left(0.01+x^{\wedge} 2-0.2 x\right) ;$
$x^{\wedge} 2=0.0424+4.24 x^{\wedge} 2-0.848 x$;
$3.24 x^{\wedge} 2-0.848 x+0.0424=0$;
$x 1=0.067$ x2 $=0.194 ;$
x2 $=0.194-n o$!
So, $[\mathrm{CO} 2]=[\mathrm{H} 2]=x 1=0.067 \mathrm{M}$;
$[\mathrm{CO} 2]=[\mathrm{H} 2]=x=0.067 \mathrm{M}$;
$[\mathrm{CO}]=[\mathrm{H} 2 \mathrm{O}]=0.1-\mathrm{x}=0.1-0.067=0.033 \mathrm{M}$.
Answer: $[\mathrm{CO} 2]=[\mathrm{H} 2]=0.067 \mathrm{M}$ and $[\mathrm{CO}]=[\mathrm{H} 2 \mathrm{O}]=0.033 \mathrm{M}$.

