Question \#83073, Chemistry / General Chemistry | for completion
Expt. [S2O8 raised to 2-] [I raised to negative] Initial Rate

1. $0.0360 .0601 .5 \times 10$ raised to negative 5
2. $0.0720 .0602 .9 \times 10$ raised to negative 5
3. $0.0360 .01202 .9 \times 10$ raised to negative 5

S2O8 raised to 2- (aq) + 3I raised to negative (aq) yields 2SO4 raised to 2- (aq) + I3 raised to negative (aq)
A. Determine the order of the reactions and write each reactant. Write the rate law for the above reaction.
B. Calculate the rate constatnt, k , and give its appropriate units.
C. Calculate reaction rate when each reactant concentration is 0.20 M .

Answer:
$\mathrm{S}_{2} \mathrm{O}_{8^{2-}}{ }_{(\mathrm{aq})}+2 \mathrm{I}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{I}_{2(\mathrm{aq})}+2 \mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$
A. Determine the order of the reactions and write each reactant. Write the rate law for the above reaction.

The order of the reactions 3 , because for $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}=1$ and for $\mathrm{I}^{-}=2$, therefore $1+2=3$.
Rate law for the reaction:
rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right] \times\left[\left[^{-}\right]^{2}\right.$
B. Calculate the rate constatnt, k , and give its appropriate units. rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right] \times\left[\left[^{-}\right]^{2}\right.$
$\mathrm{k}=$ rate $/\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right] \times\left[\mathrm{I}^{-}\right]^{2}=1,5 \times 10^{-5} / 0,036 \times 0,060^{2}=1,5 \times 10^{-5} / 0,0001296$ $=0,1157$
For order three, the rate constant has units of $\mathrm{L}^{2} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{~s}^{-1}\left(\right.$ or M $\left.{ }^{-2} \cdot \mathrm{~s}^{-1}\right)$
C. Calculate reaction rate when each reactant concentration is 0.20 M .

$$
\text { rate }=\mathrm{k}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right] \times\left[\mathrm{I}^{-}\right]^{2}=0,1157 \times 0,2 \times 0,2^{2}=0,0009256
$$

