The solubility product of $\mathrm{Cu}(\mathrm{OH})_{2}$ is $4.8 \times 10-20$. Calculate the value of $\mathrm{pCu} 2+$, i.e. $-\log$ [$\mathrm{Cu} 2+$], in an aqueous solution of NaOH which has a pH of 12.68 and which is saturated with $\mathrm{Cu}(\mathrm{OH}) 2$.

```
\(\mathrm{Ksp}\left(\mathrm{Cu}(\mathrm{OH})_{2}\right)=4.8 \times 10^{-20}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}\)
\(\mathrm{pOH}=14-\mathrm{pH}=14-12.68=1.32\)
\(\mathrm{pOH}=-\lg \left[\mathrm{OH}^{-}\right]=1.32\)
\(\left[\mathrm{OH}^{-}\right]=0.0479 \mathrm{M}\)
\(\left[\mathrm{Cu}^{2+}\right]=\mathrm{Ksp}\left(\mathrm{Cu}(\mathrm{OH})_{2}\right) /\left[\mathrm{OH}^{-}\right]^{2}\)
\(\left[\mathrm{Cu}^{2+}\right]=4.8 \times 10^{-20} /(0.0479)^{2}=4.810^{-20} / 2.2 \times 10^{-3}=2.2 \times 10^{-17}\)
\(-\lg \left[\mathrm{Cu}^{2+}\right]=-(0.34-17)=16.66\)
\(\mathrm{pCu}^{2+}=-\log _{10}\left[\mathrm{Cu}^{2+}\right]=16.66\)
```

