Calculate the standard enthalpy change for the following reaction at $25^{\circ} \mathrm{C}$.
$\mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{C}(\mathrm{graphite})(\mathrm{s})=\mathrm{H} 2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$

Solution:

Take standard enthalpy of formation for all compounds at $25^{\circ} \mathrm{C}$ from [1]:
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}:-241.83 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{\text {(graphite)(s) }} 0$
$\mathrm{H}_{2(\mathrm{~g})}$: 0
$\mathrm{CO}_{(\mathrm{g})}:-110.53 \mathrm{~kJ} / \mathrm{mol}$
Then, the change of standard enthalpy is equal to $\Delta H=\left(\sum \Delta H_{\text {right }}\right)-\left(\sum \Delta H_{\text {left }}\right)=(0+(-110.53))-(-241.83+0)=131.3 \mathrm{~kJ} / \mathrm{mol}$, where $\sum \Delta H_{\text {right }}$ and $\sum \Delta H_{\text {left }}$ - sum of standard enthalpy of formation of compounds on right and left side of chemical equation, respectively.

Answer: $131.3 \mathrm{~kJ} / \mathrm{mol}$

Reference:

1. David R. Lide, ed., CRC Handbook of Chemistry and Physics, 90th Edition (CD-ROM Version 2010), CRC Press/Taylor and Francis, Boca Raton, FL.
