Question \#82699

Calculate the change in heat energy, in kJ , when 50 cm 3 of $2.50 \mathrm{~mol} / \mathrm{dm} 3$ sodium hydroxide solution is added to excess nitric acid

Solution:

The chemical reaction between sodium hydroxide and nitric acid is well-known as neutralization reaction [1]. According to the definition [2], the heat released during a neutralization reaction is:

$$
Q=-\Delta H * n
$$

As sodium hydroxide is a strong base and nitric acid is a strong acid, the molar heat of neutralization for this chemical reaction is always the same ($-55.9 \mathrm{~kJ} / \mathrm{mol}$) [3]. Therefore, the change in heat energy is:

$$
\begin{gathered}
n=C_{M} * V=2.5 * 0.05=0.125 \mathrm{~mol} \\
Q=-\Delta H_{\text {neutralization }} * n=-(-55.9) * 0.125=6.99 \approx 7 \mathrm{~kJ}
\end{gathered}
$$

Answer:

The change in heat energy in the reaction between sodium hydroxide and nitric acid is 7 kJ

References:

[1] https://en.wikipedia.org/wiki/Neutralization (chemistry)
[2] https://en.wikipedia.org/wiki/Enthalpy of neutralization
[3] https://www.ausetute.com.au/heatneutral.html

