A nitrogen gas from a 24.0 L container with the pressure of 2 atm and an oxygen gas from a 12.0 L with a pressure of 2 atm and 273 K were mixed together in a 10.0 L container. what are the partial pressure exerted by each gas in the mixture and what is the total pressure? use ideal gas formula and mole fraction.

Solution:

$$
\begin{aligned}
& \text { - } \\
& \text { for } N_{2}: P_{N_{2}} V_{N_{2}}=n_{N_{2}} R T \Rightarrow \\
& 九=\frac{2 \text { atm } \times 24.04}{0,082057\left(\frac{\text { d.atn }}{\text { moles } k}\right) \times 273 \mathrm{~K}}= \\
& =2.143 \text { nobles; } \\
& \text { sorO2: } n=\frac{2 \text { atM } \times 12.04}{0,082057\left(\frac{l \cdot a t m}{\text { modes. } K}\right) \cdot 273 \mathrm{~K}}=1,071 \text { moles. }
\end{aligned}
$$

A mixture of ideal gases is formed after mixing of w_{2} and O_{2} :

$$
\begin{aligned}
& \text { the partial pressure: } \\
& p_{i}\left(N_{a}\right)=\frac{2,143 \text { roles. } 0,082057(\text { l. aw } / \text { notes. } k)_{x}}{104} \\
& \times 273 \mathrm{~K}=4,801 \text { other } \\
& \rho_{i}\left(\mathrm{O}_{2}\right)=\frac{1,071 \text { roles } \cdot 0,082057 / \mathrm{letn} / \text { moles. } \mathrm{k})}{10.04} \times \\
& \times 273 \mathrm{~K}=2.399 \text { active }
\end{aligned}
$$

Due to Dalton's Law:

$$
P_{\text {total }}=p_{i}\left(N_{2}^{2}\right)+p_{i}\left(O_{2}\right)=7,2 \text { atm }
$$

otnswer:

$$
\begin{aligned}
& p_{i}\left(v_{2}\right)=4.801 \text { atm } \\
& p_{i}\left(V_{2}\right)=2.399 \text { atm } \\
& p_{\text {total }}=7,200 \text { atm }
\end{aligned}
$$

