A sample of nitrogen at $40^{\circ} \mathrm{C}$ has a volume of 5.0 L . At what temperature will it occupy 8.0 L ?

Answer:
The temperature of the nitrogen sample, which occupies 8.0 L , will be $227.8^{\circ} \mathrm{C}$.
It is able to find the solution of this task, only if the pressure (P) is constant (Charles's law [1]). Otherwise, according to the ideal gas law [2], there is an infinite number of solutions:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}=\text { const }
$$

So, the temperature of nitrogen will be:

$$
\begin{gathered}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}=\text { const } \\
T_{2}=\frac{V_{2} * T_{1}}{V_{1}}=\frac{8 l * 313 \mathrm{~K}}{5 l}=500.8 \mathrm{~K}=227.8^{\circ} \mathrm{C}
\end{gathered}
$$

References:

[1] https://en.wikipedia.org/wiki/Charles\'s law
[2] https://en.wikipedia.org/wiki/Ideal gas law

