Question:
Aqueous sulfuric acid
will react with solid sodium hydroxide
to produce aqueous sodium sulfate
and liquid water
. Suppose 53.0 g of sulfuric acid is mixed with $24 . \mathrm{g}$ of sodium hydroxide. Calculate the minimum mass of sulfuric acid that could be left over by the chemical reaction. Be sure your answer has the correct number of significant digits.

Solution:

$\mathrm{H} 2 \mathrm{SO} 4+2 \mathrm{NaOH} \rightarrow \mathrm{Na} 2 \mathrm{SO} 4+2 \mathrm{H} 2 \mathrm{O}$
$\mathrm{n}=\mathrm{m} / \mathrm{M}$
$\mathrm{n}(\mathrm{H} 2 \mathrm{SO} 4)=31.4 \mathrm{~g} \times 1 \mathrm{~mole} / 98.08 \mathrm{~g}=0.32$ moles;
$\mathrm{n}(\mathrm{NaOH})=40 . \mathrm{g} \times 1 \mathrm{~mole} / 40.00 \mathrm{~g}=1.0 \mathrm{moles} ;$
1 mole of NaOH would react with 0.5 mole of H 2 SO 4 , but there's not that much.
0.32 moles H 2 SO 4 reacts with $2 * 0.32=0.64$ moles NaOH , so H 2 SO 4 reacts completely, and 1.0 $0.640=0.36 \mathrm{moles} \mathrm{NaOH}$ will be unreacted.
0.0 g of H 2 SO 4 will be left over.

Answer: 0.0g.

