Question:
Tractor exhaust has the following composition by volume at 380C:
$\mathrm{N} 2=73 \%, \mathrm{H} 2 \mathrm{O}=13 \%, \mathrm{CO} 2=12 \%, \mathrm{O} 2=2 \%$
find: apparent mol. weight, composition by weight, R for gas, volume of 1 kg mix.

Solution:

$\mathrm{R}=8.314 \mathrm{~J} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)$;
$\mathrm{V}($ sum $)=100 \mathrm{~L}$, so $\mathrm{V}(\mathrm{N} 2)=73 \mathrm{~L}, \mathrm{~V}(\mathrm{H} 2 \mathrm{O})=13 \mathrm{~L}, \mathrm{~V}(\mathrm{CO} 2)=12 \mathrm{~L}, \mathrm{~V}(\mathrm{O} 2)=2 \mathrm{~L}$;
So $\mathrm{n}(\mathrm{N} 2)=73 / 22.4=3.259 \mathrm{~mol}$;
$\mathrm{n}(\mathrm{H} 2 \mathrm{O})=13 / 22.4=0.58 \mathrm{~mol} ;$
$\mathrm{n}(\mathrm{CO} 2)=12 / 22.4=0.536 \mathrm{~mol}$;
$\mathrm{n}(\mathrm{O} 2)=2 / 22.4=0.089 \mathrm{~mol} ;$
$\mathrm{m}(\mathrm{N} 2)=3.259 * 14=45.626 \mathrm{~g}$;
$m(\mathrm{H} 2 \mathrm{O})=0.58 * 18=10.44 \mathrm{~g}$;
$m(C O 2)=0.536 * 44=23.584 \mathrm{~g}$;
$\mathrm{m}(\mathrm{O} 2)=0.089$ * $32=2.848$;
$\mathrm{m}($ sum $)=82.498 \mathrm{~g}$;
$w(N 2)=45.626 / 82.498=55.3 \%$;
$w(H 2 O)=10.44 / 82.498=12.7 \%$;
$w(C O 2)=23.584 / 82.498=28.6 \% ;$
$\mathrm{w}(\mathrm{O})=2.848 / 82.498=3.5 \%$;
$P V=n R T ;$
$82.498 \mathrm{~g}=1 \mathrm{~mol}$, so $1 \mathrm{~kg}=12.121 \mathrm{~mol}$;
$101000 * V=12.121^{*} 8.314^{*}(275+38)$
$\mathrm{V}=12.121 * 8.314 * 313 / 101000=0.312$.

