Answer on Question \#81682, Chemistry / Organic Chemistry

Container "A" holds N2 gas with a mass of 54.6 g and is 4.1 times the volume of container " B " which holds argon (Ar) gas at the exact same temperature and pressure. What is the mass of the Ar (ing) within container "B"?

Solution

$n=m / M$
$\mathrm{n}\left(\mathrm{N}_{2}\right)=\frac{54.6 \mathrm{~g}}{28 \frac{\mathrm{~g}}{m o l}}=1.95 \mathrm{~mol}$
Clapeyron-Mendeleev equation for nitrogen is:
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{n}_{1} \mathrm{RT}_{1}$
As $\mathrm{n}_{1}=1.95 \mathrm{~mol}$, we get $\mathrm{P}_{1} \vee_{1}=1.95 R \mathrm{~T}_{1}, \mathrm{~V}_{1}=\frac{1.95 R T_{1}}{P_{1}}$
Clapeyron-Mendeleev equation for argon is:
$\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{n}_{2} \mathrm{RT}_{2}$
$\mathrm{V}_{2}=\frac{n_{2} R T_{2}}{P_{2}}$
As $\frac{V_{1}}{V_{2}}=4.1$ and $\mathrm{P}_{1}=\mathrm{P}_{2}, \mathrm{~T}_{1}=\mathrm{T}_{2}$, we get:
$\frac{V_{1}}{V_{2}}=\frac{\frac{1.95 R T_{1}}{P_{1}}}{\frac{n_{2} R T_{2}}{P_{2}}}=\frac{1.95 R T_{1}}{P_{1}} \times \frac{P_{2}}{n_{2} R T_{2}}=\frac{1.95}{n_{2}}$
$\frac{1.95}{n_{2}}=4.1$
$n_{2}=0.476$
$\mathrm{n}(\mathrm{Ar})=0.476 \mathrm{~mol}$
$m=M \times n$
$\mathrm{m}(\mathrm{Ar})=40 \mathrm{~g} / \mathrm{mol} \times 0.476 \mathrm{~mol}=19.04 \mathrm{~g}$

Answer: 19.04 g

