Find $\mathrm{c}_{\mathrm{cal}}$
$\mathrm{q}_{\text {cal }}=\mathrm{c}_{\text {cal }} * \Delta \mathrm{~T}$, then $\mathrm{c}_{\text {cal }}=\frac{q_{\text {cal }}}{\Delta T}$
$\mathrm{c}_{\mathrm{cal}}=\frac{80 \mathrm{~J}}{(273.15+1.20) K}=0.292 \frac{\mathrm{~J}}{\mathrm{~K}}$
Heat absorbed by gasoline is:
$\mathrm{q}_{1}=\mathrm{nc}_{\mathrm{p}} \Delta \mathrm{T}$
$\mathrm{n}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=\mathrm{m} / \mathrm{M}=8.50 \mathrm{~g} / 114 \mathrm{~g} / \mathrm{mol}=0.0756 \mathrm{~mol}$
$\mathrm{T}_{\text {final }}=273.15+50=323.15 \mathrm{~K}$
$\mathrm{q}_{1}=0.0756 \mathrm{~mol} * 39.36 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}) *\left(323.15-\mathrm{T}_{1}\right)$
Heat absorbed by calorimeter:
$\mathrm{q}_{2}=\mathrm{c}_{\mathrm{cal}} * \Delta \mathrm{~T}$
$\mathrm{T}_{1}=28+273.15=301.15 \mathrm{~K}$
$\mathrm{T}_{2}=273.15+50=323.15 \mathrm{~K}$
$\mathrm{q}_{2}=0.292 \mathrm{~J} / \mathrm{K} *(323.15-301.15) \mathrm{K}=6.424 \mathrm{~J}$
q , supplied by electrical resistance heater, is 80.0 J
q , absorbed by gasoline and calorimeter is $\mathrm{q}_{1}+\mathrm{q}_{2}$
$0.0756 \mathrm{~mol} * 39.36 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}) *\left(323.15-\mathrm{T}_{1}\right)+6.424 \mathrm{~J}=80 \mathrm{~J}$
$0.0756 \mathrm{~mol} * 39.36 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}) *\left(323.15-\mathrm{T}_{1}\right)=73.576 \mathrm{~J}$
$323.15-\mathrm{T}_{1}=24.73$
$\mathrm{T}_{1}=298.42$
$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=298.42-273.15=25.72{ }^{\circ} \mathrm{C}$
Answer: $25.72{ }^{\circ} \mathrm{C}$

