If you reacted 88.9 g of ammonia with excess oxygen, what mass of water would you expect to make? You will need to balance the equation first.
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})->\mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Solution:

$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})->4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{M}\left(\mathrm{NH}_{3}\right)=17 \mathrm{~g} / \mathrm{mol}$

$$
n=\frac{m}{M}
$$

$\mathrm{n}=5,23 \mathrm{~mol}$
According to equation
$\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=6 \times 5,23 / 4=7,845 \mathrm{~mol}$

$$
m=n * M
$$

$\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol}$
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \times 7,845=141,2 \mathrm{~g}$
Answer: $\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=141,2 \mathrm{~g}$

