a solution is 0.1 M in $\mathrm{cl}^{\wedge}-, 0.01 \mathrm{M}$ in $\mathrm{br}^{\wedge}-, 0.001 \mathrm{M}$ in l^{\wedge}-, agno3 is added to the solution [V $\mathrm{mix}=0$].the concentration of ag+required to start precipitation of all 3 ions is [given, ksp of agcl is $10^{\wedge}-10, \mathrm{ksp}$ of agbr is $10^{\wedge}-13, \mathrm{ksp}$ of $\mathrm{agl}=10^{\wedge}-7$]

Solution.

According to the assignment: $\left[\mathrm{Cl}^{-}\right]=0.1 \mathrm{M},\left[\mathrm{Br}^{-}\right]=0.01 \mathrm{M},\left[\mathrm{I}^{-}\right]=0.001 \mathrm{M}$.
$\mathrm{K}_{\mathrm{sp}}(\mathrm{AgCl})=10^{-10} ; \mathrm{K}_{\text {sp }}(\mathrm{AgBr})=10^{-13} ; \mathrm{K}_{\mathrm{sp}}(\mathrm{AgI})=10^{-7}$.
$\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=\left[\mathrm{Ag}^{+}\right] \times\left[\mathrm{Cl}^{-}\right]=10^{-10} ;\left[\mathrm{Ag}^{+}\right]_{1}=\frac{K_{s p}}{\left[\mathrm{Cl}^{-}\right]}=\frac{10^{-10}}{0.1}=10^{-9} \mathrm{M}$;
$\mathrm{K}_{\text {sp }}(\mathrm{AgBr})=\left[\mathrm{Ag}^{+}\right] \times\left[\mathrm{Br}^{-}\right]=10^{-13} ;\left[\mathrm{Ag}^{+}\right]_{2}=\frac{K_{s p}}{\left[B r^{-}\right]}=\frac{10^{-13}}{0.01}=10^{-11} \mathrm{M} ;$
$\mathrm{K}_{\text {sp }}(\mathrm{Agl})=\left[\mathrm{Ag}^{+}\right] \times\left[\mathrm{I}^{-}\right]=10^{-7} ;\left[\mathrm{Ag}^{+}\right]_{3}=\frac{K_{S p}}{\left[I^{-}\right]}=\frac{10^{-7}}{0.001}=10^{-4} \mathrm{M}$;
$\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Ag}^{+}\right]_{1}+\left[\mathrm{Ag}^{+}\right]_{2}+\left[\mathrm{Ag}^{+}\right]_{3}=10^{-9}+10^{-11}+10^{-4} \approx 10^{-4} \mathrm{M}$.

Answer: $\approx 10^{-4} \mathrm{M}$

Answer provided by AssignmentExpert.com

