Answer on Question \#79848, Chemistry/ General Chemistry

Find the enthalpy change per mole of sodium when sodium reacts with water. 13 grams of sodium reacts with 247 cm 3 of water, producing a temperature change from 298 K to 339.7 K . The specific heat capacity of water is $4.18 \mathrm{~J} / \mathrm{Kg}$.

Answer

$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
$\Delta H_{r x n}=-q$
$q=c m \Delta T$
where
q is amount of heat absorbed/released
c is specific heat of solution (in such calculation an assumption is made that $\mathrm{c}_{\text {solution }}=$ $c_{\text {water }}$)
m is mass of solution
ΔT is temperature change
Find mass of solution:
$m_{\text {solution }}=m\left(\mathrm{H}_{2} \mathrm{O}\right)+m(\mathrm{Na})-m\left(\mathrm{H}_{2}\right)$
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right) \times \rho\left(\mathrm{H}_{2} \mathrm{O}\right)=247 \mathrm{~cm}^{3} \times 1 \mathrm{~g} / \mathrm{cm}^{3}=247 \mathrm{~g}$
$m(N a)=13 \mathrm{~g}$
Find $m\left(\mathrm{H}_{2}\right)$:
$\mathrm{n}(\mathrm{Na})=\mathrm{m} / \mathrm{M}=13 \mathrm{~g} / 23 \mathrm{~g} / \mathrm{mol}=0.57 \mathrm{~mol}$.
According to equation mole ratio $n(\mathrm{Na}): \mathrm{n}\left(\mathrm{H}_{2}\right)=2: 1$, then $\mathrm{n}\left(\mathrm{H}_{2}\right)=\mathrm{n}(\mathrm{Na}) / 2=0.57 / 2=0.29 \mathrm{~mol}$.
$\mathrm{m}\left(\mathrm{H}_{2}\right)=\mathrm{n} \times \mathrm{M}=0.29 \mathrm{~mol} \times 2 \mathrm{~g} / \mathrm{mol}=0.58 \mathrm{~g}$
$\mathrm{m}_{\text {solution }}=247 \mathrm{~g}+13 \mathrm{~g}-0.58 \mathrm{~g}=259.42 \mathrm{~g}$
$\mathrm{q}=4.18 \mathrm{~J} / \mathrm{Kg} \times 259.42 \mathrm{~g} \times(339.7 \mathrm{~K}-298 \mathrm{~K})=45218 \mathrm{~J}$
The temperature of solution increased because heat was absorbed by the solution ($q>0$).
Then $\Delta H_{r x n}=-q=-45218 \mathrm{~J}$ per 0.57 mol of Na
Find $\Delta H_{r x n}$ per 1 mole of Na
$\Delta H_{\text {rxn }}=-45218 \mathrm{~J} / 0.57 \mathrm{~mol}=-79331 \mathrm{~J} / \mathrm{mol} \cong-79 \mathrm{~kJ} / \mathrm{mol}$

Answer: -79 kJ/mol

