1) $\omega = m$ (substance) / m (solution) *100%

m (solution) = m (substance) + m (solvent)

 $\omega = m \text{ (substance)} / (m \text{ (substance)} + m \text{ (solvent)})*100\%$

 $m \text{ (solvent)} = m (H_2O) = 20 \text{ g}$

 $\omega = 80\%$ or 0.8

m (substance) = m (methyl alcohol) =X

0.8 = X / (X + 20)

0.8*X+16 = X

16 = 0.2 * X

```
X = 80
```

m (substance) = m (methyl alcohol) = 80 g

2) n_{NaCl} – amount of NaCl = m_{NaCl}/M(NaCl) = 12.6 g/58.5g/mole =0.215 moles n_{KCl} – amount of KCl= m_{KCl}/M(KCl) = 21.3 g/74.5g/mole =0.2859 moles n_{H2O} – amount of H₂O = m_{H2O} / M(H₂O) = 122 g/18 g/mole = 6.778 moles N – mole fraction of NaCl n_{tot} –total amount of all constituents in a solution = n_{NaCl} + n_{KCl} + n_{H2O} = 0.215 moles + 0.2859 moles + 6.778 moles = 7.2789 moles N = n_{NaCl} / (n_{NaCl} + n_{KCl}+n_{H2O}) = 0.215 moles / 7.2789 moles = 0.0295 or 2.95 %
3) M (H₃PO₄) = 98 g / mole n = m(H₂PO₄) / M (H₂PO₄) = 10 g/ 98 g / mole = 0.102 moles

 $n = m(H_3PO_4) / M (H_3PO_4) = 10 g/98 g / mole = 0.102 moles$ V (solution) = 104 mL = 0.104 L

 $C_M = n \text{ (solute)} / V \text{ (solution, L)} = 0.102 \text{ moles} / 0.104 \text{ L} = 0.98 \text{ M}$