1) $\omega=m($ substance $) / m($ solution $) * 100 \%$
$m($ solution $)=m($ substance $)+m($ solvent $)$
$\omega=m($ substance $) /(m($ substance $)+m($ solvent $) * 100 \%$
$m($ solvent $)=m\left(\mathrm{H}_{2} \mathrm{O}\right)=20 \mathrm{~g}$
$\omega=80 \%$ or 0.8
$m($ substance $)=m($ methyl alcohol $)=X$
$0.8=\mathrm{X} /(\mathrm{X}+20)$
$0.8 * X+16=X$
$16=0.2 * X$
$X=80$
$m($ substance $)=m($ methyl alcohol $)=80 \mathrm{~g}$
2) $\mathrm{n}_{\mathrm{NaCl}}-$ amount of $\mathrm{NaCl}=\mathrm{m}_{\mathrm{NaC}} / \mathrm{M}(\mathrm{NaCl})=12.6 \mathrm{~g} / 58.5 \mathrm{~g} /$ mole $=0.215$ moles
$\mathrm{n}_{\mathrm{KCl}}-$ amount of $\mathrm{KCl}=\mathrm{m}_{\mathrm{KC}} / \mathrm{M}(\mathrm{KCl})=21.3 \mathrm{~g} / 74.5 \mathrm{~g} / \mathrm{mole}=0.2859$ moles $\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}$ - amount of $\mathrm{H}_{2} \mathrm{O}=\mathrm{m}_{\mathrm{H} 2 \mathrm{O}} / \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=122 \mathrm{~g} / 18 \mathrm{~g} / \mathrm{mole}=6.778$ moles N - mole fraction of NaCl
$\mathrm{n}_{\text {tot }}$-total amount of all constituents in a solution $=\mathrm{n}_{\mathrm{NaCl}}+\mathrm{n}_{\mathrm{KCl}}+\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}=$
0.215 moles +0.2859 moles +6.778 moles $=7.2789$ moles
$\mathrm{N}=\mathrm{n}_{\mathrm{NaCl}} /\left(\mathrm{n}_{\mathrm{NaCl}}+\mathrm{n}_{\mathrm{KCl}}+\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}\right)=0.215$ moles $/ 7.2789$ moles $=0.0295$ or 2.95%
3) $\mathrm{M}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=98 \mathrm{~g} / \mathrm{mole}$
$\mathrm{n}=\mathrm{m}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right) / \mathrm{M}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=10 \mathrm{~g} / 98 \mathrm{~g} /$ mole $=0.102$ moles
$\mathrm{V}($ solution $)=104 \mathrm{~mL}=0.104 \mathrm{~L}$
$\mathrm{C}_{\mathrm{M}}=\mathrm{n}($ solute $) / \mathrm{V}($ solution, L$)=0.102$ moles $/ 0.104 \mathrm{~L}=0.98 \mathrm{M}$
