Question \#79159, Chemistry / General Chemistry

Suppose you are performing an experiment that requires a constant pH of 7.00. Calculate the ratio of conjugate base to weak acid required to prepare a buffer with $\mathrm{pH}=7.00$.

Solution

To answer this question we should use Henderson-Hasselbalch equation:

$$
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right)
$$

Where pH is the concentration of $\left[\mathrm{H}^{+}\right]$
pK_{a} is the acid dissociation constant
$\frac{\left[A^{-}\right]}{[H A]}$ is the ratio of the concentrations of the conjugate base and starting acid.
So we know $\mathrm{pH}=7$, and we need to choose conjugate base and weak acid to use it's pK_{a} in the formula above.

We could consider phosphate buffer:
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right)=7.2$
Find ratio $\frac{\left[A^{-}\right]}{[H A]}$

$$
\begin{gathered}
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \\
7=7.2+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \\
\log \left(\frac{\left[A^{-}\right]}{[H A]}\right)=-0.2 \\
\frac{\left[A^{-}\right]}{[H A]}=10^{-0.2} \\
\frac{\left[A^{-}\right]}{[H A]}=0.63
\end{gathered}
$$

Answer: $\frac{\left[A^{-}\right]}{[H A]}=0.63$ (for phosphate buffer)

