$\mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=\mathrm{A}_{\mathrm{r}}(\mathrm{C}) * 2+\mathrm{A}_{\mathrm{r}}(\mathrm{H}) * 5+\mathrm{A}_{\mathrm{r}}(\mathrm{O})^{*} 1+\mathrm{A}_{\mathrm{r}}(\mathrm{H}) * 1=$ $12 * 2+1 * 5+16 * 1+1 * 1=46 \mathrm{~g} / \mathrm{mole}$

How many moles of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ are contained in 15.0 grams of ethanol:

$$
\mathrm{n}=\mathrm{m} / \mathrm{M}=15 \mathrm{~g} / 46 \mathrm{~g} / \mathrm{mole}=0.326 \mathrm{moles}
$$

$\mathrm{N}_{\text {molecules }}$ - How many molecules of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ are contained in 15.0 grams of ethanol:

$$
\mathrm{N}_{\text {molecules }}=\mathrm{N}_{\mathrm{A}} * \mathrm{n}=0.326 \text { moles } * 6.022 * 10^{23} \text { moles }^{-1}=1.96 * 10^{23}
$$

$\mathrm{N}_{\mathrm{A}}=6.022 * 10^{23}$ moles $^{-1}$, Avogadro's number or Avogadro constant

