Question \#79016

Using the quadratic equation to calculate [H3O+] in 0.00250 M HNO 2 , what are the values of a, b, c and x, where a, b, and c are the coefficients in the quadratic equation $a x 2+b x+c=0$, and x is [H3O+]? Recall that $\mathrm{Ka}=4.5 \times 10-4$.

Express a, b, c, and x numerically separated by commas.

The right answer is $1,4.5 \times 10^{-4},-1.125 \times 10^{-6}, 0.0104$.

Solution:
As HNO_{2} is a weak acid, the formula for calculation concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is [1]:
$K_{\alpha}=\frac{x^{2}}{C_{H A}-x}$, where $\mathrm{x}-$ the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
After transformation, we will get the next equation:

$$
x^{2}+K_{\alpha} * x-C_{H A} * K_{\alpha}=0
$$

So, $\mathrm{a}=1, \mathrm{~b}=\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-4}, \mathrm{c}=-\mathrm{C}_{\mathrm{HA}} * \mathrm{~K}_{\mathrm{a}}=-4.5 \times 10^{-4} * 0.0025=-1.125 \times 10^{-6}$.
The concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](x)$ is equal to:

$$
x=\frac{-K_{\alpha}+\sqrt{K_{\alpha}+4 * K_{\alpha} * C_{H A}}}{2}=0.0104
$$

So, $x=0.0104$.
So, the full answer is $a=1, b=4.5 \times 10^{-4}, c=-1.125 \times 10^{-6}, c=0.0104$.

Reference:
[1] http://www.science.uwaterloo.ca/~cchieh/cact/c123/wkacids.html

