Because HF is a weak acid and HCl is a strong acid, the major species in solution are HF, H+, and Cl–. The Cl–, which is the conjugate base of a strong acid, is merely a spectator ion in any acid–base chemistry.

	$HF_{(aq)} \rightarrow$	\bullet H ⁺ _(aq) +	F ⁻ (aq)
Initial	0.17M	0.17M	
Change	-xM	+xM	+xM
Equilibrium	(0.17-x)M	(0.17+x)M	хM
$K_a = 3.5 \cdot 10^{-4} = \frac{[H^+][F^-]}{[HF]} = \frac{(0.17 + x) \cdot x}{0.17 - x}$			

If we assume that x is small relative to 0.17 M, this expression simplifies. $\frac{0.17x}{0.17}$ = 3.5 \cdot 10^{-4}

 $x = 3.5 \cdot 10^{-4} M = [F^-]$

This F– concentration is substantially smaller than it would be in a 0.17 M solution of HF with no added HCl. The common ion, H+ , suppresses the ionization of HF. The concentration of H+(aq) is

 $[H_{3}O^{+}] = 0.17 + 3.5 \cdot 10^{-4} = 0.17035 \text{ M}$ $[HF] = 0.17 - 3.5 \cdot 10^{-4} = 0.16965 \text{ M}$ pH = 0.77pOH = 14 - pH = 13.23 $[OH^{-}] = 5.89 \cdot 10^{-14} \text{ M}$

[H+] is due entirely to the HCl; the HF makes a negligible contribution by comparison.

[Cl⁻] = 0.17035 M