Answer on Question \#78167, Chemistry / Organic Chemistry

Question:

A pressurized inflated tube at room temperature contains chlorine and hydrogen gases with masses 6 kg and 9 kg respectively. Given that the total pressure of the tube is 190 kPa, calculate:
a) the moles of "air" in the tube
b) the partial pressure of the gases

Solution:

Amount of chlorine: $6000 / 70.90=84.626 \mathrm{~mol}$
Amount of hydrogen: $9000 / 2.016=4464.286 \mathrm{~mol}$
Amount of "air": $84.626+4464.286=4548.912 \mathrm{~mol}$
Molar part is equal to the partial pressure (for the mixture of gases), so:
Partial pressure of chlorine: $(84.626 / 4548.912) \cdot 190=\underline{3.535} \mathrm{kPa}$
Partial pressure of hydrogen: $(4464.286 / 4548.912) \cdot 190=186.465 \mathrm{kPa}$

Answer:

a)

Amount of "air": 4548.912 mol
b)

Partial pressure of chlorine: 3.535 kPa
Partial pressure of hydrogen: 186.465 kPa

