Answer on Question 77589 in Physical Chemistry
$4 \mathrm{OH}^{-}=\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 e^{-}$
$. \tau=3.00$ hours $=3 \times 3600=10800$ seconds
$\mathrm{I}=8.00 \mathrm{~A}$
. $\mathrm{n}\left(\mathrm{O}_{2}\right)=$?
Solution: Find the volume of O_{2}
According to Faraday's law $\mathrm{V}=\frac{V_{E} \times I \times \tau}{F}=\frac{5.6 \times 8 \times 10800}{96500}=5.01 \mathrm{~L}$
$V_{E}\left(O_{2}\right)=\frac{V_{M}}{2 \times 2}=\frac{22.4}{4}=5.6 \mathrm{~L} / \mathrm{mol}$
Find the amount of substance of O_{2}
$. \mathrm{n}=\frac{V}{V_{M}}=\frac{5.01}{22.4}=0.224 \mathrm{~mol}$

